DEBUGGING FORTRAN
MEMORY PROBLEMS IN AIX

George VandenBerghe
IBM NCEP SUPPORT
Sp-support@ncep.noaa.gov

CONTENTS

* Define segmentation fault
* Describe memory allocation in fortran.
* [llustrate code forms that produce memory bugs.

* Describe helpful compiler and load options to find
memory bugs.

* Describe some helpful runtime environment
variables

* Describe some manual debugging techniques
* Introduce dbx and Totalview but NOT in detail.

What 1s a segfault?

Segfaults occur when an instuction uses an invalid address.
They can occur in legal code when your data structures are
too large.

Bug segfaults are usually due to memory overwrites which
change address lengths in executable code, overwrite array
index variables or array descriptors in subroutines.

Best way to prevent these is to find the causes (addressed in
coming slides).

Segfaults from oversize data structures oceur in failing
routine. Segfaults from memory overwrites are often far
from failing routine

MEMORY ALLOCATION

+ Memory is allocated from either a full data area or a subset
called the STACK.

+ Default data area on asp/bsp 1s 128mb and default stack is
32mb.

+ These can be increased at load time with load options —
bmaxdata: size —bmaxstack:size2.

o Max is —bmaxdata: OxSO000000 —bmaxstack: Ox 10000000

Decimal equivalents are 2gb and 256mb or -
bmaxdata: 2000000000 —bmaxstack: 256000000

These are slight underestimates.. Hex values are actual maxes

Frost and snow values are huge for data and 0x80000000 for
stack

ERRORS FROM
INSUFFICIENT MEMORY

1: exec(): 0309-036 Cannot load program ./a.out because of the following errors:
0509-026 System evror: There is not enough memory available now.

2: 1525-108 Evvor encountered while attempting fo allocate a data object. The
program will stop. (this can have many other causes however)

a.out

¢ dimension array(262000,300) {case I error produced when allocatable

real , allocatable :: array(:,:) and allocate are commented out and
allocate(array(262000,300)) dimension comment is removed)
array=>

print *'hello world'
stop
end

ERRORS FROM
INSUFFICIENT MEMORY

Programs asking for too much memory may also segfault in
Subroutine initialization sections, in MPI or (rarer) in [.O.

Libraries.

Correct by loading with larger —bmaxstack: and —bmaxdata.

WHAT GOES WHERE

SUBROUTINE SUB(V,IX)
COMMON/BLK/C(100) <<common DATA
DIMENSION A(100) << subroutine local varies

with compiler and options
DIMENSION B(IX) <<automatic.. ALWAYS stack
DIMENSION V(IX) <<depends on caller allocation
REAL, ALLOCATABLE :: V2(3)

ALLOCATE (V2(IX)) <<allocatable always DATA

COMPILER OPTIONS
CONTROLLING LAYOUT

* -gsave makes subroutine local variables static
(DATA)

» -gnosave makes these STACK
» Static 1s default for £77 xIf and mpxIf

 Stack 1s default for xIf r x1f90 mpxlf r mpx1{90
and mpx1f90 r.

* Avoid gsave for new programs. Trend is away from this
as default. Use SAVE of variables that must retain values between
calls. COMMON bloclks created in subroutines must also be SAVED

» Variables initialized with a DATA statement are
static. This behavior 1s vendor dependent.

MEMORY OVERWRITE BUGS

These are common and HARD to find.
Most common cause of segfaults

Senior analysts will remember MVS error
240.. Segfaults are analagous.

Two common forms

ARRAY OUT OF BOUNDS

dimension A(100)
Do k=1,200
A(k)=value

End do

Whatever variable is stored after A will get silently
clobbered.

Compile with —qcheck or —C finds these at runtime

Executable aborts with trace/bpt trap if compiled
with —qcheck.

SUBROUTINE BINDING
MISMATCH

*» Realab.,c
call sub(a,b,c)

Subroutine sub(a,b,c)
Real(kind=8) c.a
Real b

Stores into a and ¢ will clobber b and something
after c.

» Invisible array length descriptors can get
clobbered this way also.

-gextchk options

» Subroutine binding errors cannot generally be
caught by compiler in fortran 77 code. (modules
and CONTAINED subroutines enable detection in
fortran 90)

* The linker can detect them with help

» —gextchk in compile AND link steps causes £77
code to be checked for binding errors at load time
(inconsistent calls in same routine are caught by
COMPILER a special fortran 77 case)

-gextchk

-qextchk detects binding errors at link time.
Loader terminates with return code 8

If —-bloadmap:file is specified then a text file
containing all of the mismatched routine
names and their callers will be written. (this
file 1s used for other loader output also)

Common block alignment errors are also
sometimes caught.

_gextchk PROBLEM

Binding mismatches are allowed in fortran.

Routines can be called with parameters of
different types in different calls.

MPI routines are generally called with different
types for some arguments. Legal and correct MPI
code 1s unlikely to load properly with —qextchk.

One can go through loadmap and exclude MPI
names from consideration or examine these for
actual binding ERRORS rather than mismatches.

-gextchk

» An alternative 1s to insert

» @PROCESS NOEXTCHK before MPI
calls.

RUNTIME OPTIONS

+ For MPI jobs try buffersize variables.

+ For threaded jobs check threadcount and thread buffer
variables sizes.
(XLSMPOPTS="parthds=4,stack=64000000"")

s (default stack setting of 4mb is common cause of segfaults
in large threaded executables)

+ Codes that try to write huge corefiles may instead write
useless zero length corefiles.

+ Ifthis happens try MP COREFILE FORMAT=lite in
environment.

+ Trysetting MP SHARED MEMORY to no (default on
asp/bsp 1s no but on frost/snow yes)

RUNTIME OPTIONS

+ Trysetting MP EAGER LIMIT to zero (this prevents
buffering of MPI messages and associated buffer issues but
performance for small messages is lowered. May also
cause deadlocks but these are user ervors in comms design
which would have surfaced anyway)

+ Trysetting MP BUFFER MEM to lower or higher values

(default 1s 2.8 mbytes). Lower values reduce performance
but also reduce buffer memory problems.

+ If segfaults produce zero length corefiles, try setting
MP COREFILE FORMAT=lite. This will write a
compact TEXT corefile with a trace.

MANUAL METHODS (faster
than you think!)

* For optimization problems try compiling half of .f
with high and half with no optimization. Redo
switching halves.

. Repeat with half that fails. {this is called a binary search)

» This method often 1solates single routines with
optimization bugs. Convergence 1s logarithmic.

» Technique also works for segfaults when a good
variable address goes bad. Prints of bad variable
work until the clobbering occurs. It also works for
memory overwrites that occur early in execution
and also for 1solating numerical differences

Debuggers

Dbx. Most useful for a quick look at a
corefile.

Do cd to core containing directory and do
dbx a.out where a.out 1s your exccutable.
At prompt type “where” to get stack trace.

TOTALVIEW DEBUGGER IS BEYOND
SCOPE OF THIS TALK (But
TOTALVIEW is available on frost/snow!)

When Presenting Problems!

» Pleasc send any problems to sp-
supportancep.noaa.gov Problems sent
privately to someone on the NCEP tcam

may not be tracked or resolved as optimally.

10

